Episode 3 of Geometry

Using nothing more than an ordinary pencil, see how three angles in a triangle can add up to 180 degrees. Then compare how the experience of turning a pencil on a flat triangle differs from walking in a triangular shape on the surface of a sphere. With this exercise, Professor Tanton introduces you to the difference between flat and spherical geometry

Running Time

28 mins

Year

2014

Kanopy ID

1338393

Filmmakers

Languages

Subjects

Show More

If you are a student or a professor:

Watch nowIf you are a librarian or a professor:

Bending the Axioms—New Geometries

Wrap up the course by looking at several fun and different ways of reimagining geometry. Explore the counterintuitive behaviors of shapes, angles, and lines in spherical geometry, hyperbolic geometry, finite geometry, and even taxi-cab geometry. See how the world of geometry is never a closed-book experience.

The Joy of Trigonometry

Trigonometry deals with the sides and angles of triangles. This lecture defines sine, cosine, and tangent, along with their reciprocals, the cosecant, secant, and cotangent. Extending these definitions to the unit circle allows a handy measure of angle: the radian.

The Classification of Triangles

Continue the work of classification with triangles. Find out what mathematicians mean when they use words like scalene, isosceles, equilateral, acute, right, and obtuse. Then, learn how to use the Pythagorean theorem to determine the type of triangle (even if you don't know the measurements of the angles).

The Joy of Geometry

Geometry is based on a handful of definitions and axioms involving points, lines, and angles. These lead to important conclusions about the properties of polygons. This lecture uses geometric reasoning to derive the Pythagorean theorem and other interesting results.

Beginnings—Jargon and Undefined Terms

Lay the basic building blocks of geometry by examining what we mean by the terms point, line, angle, plane, straight, and flat. Then learn the postulates or axioms for how those building blocks interact. Finally, work through your first proof--the vertical angle theorem.

Similarity and Congruence

Define what it means for polygons to be "similar" or "congruent" by thinking about photocopies. Then use that to prove the third key assumption of geometry--the side-angle-side postulate--which lets you verify when triangles are similar. Thales of Ionia used this principle in 600 B.C.E. to impress the Egyptians by calculating…

What Is the Sine of 1°?

So far, you've seen how to calculate the sine, cosine, and tangents of basic angles (0deg, 30deg, 45deg, 60deg, and 90deg). What about calculating them for other angles--without a calculator? You'll use the Pythagorean theorem to come up with formulas for sums and differences of the trig identities, which then…

Exploring Geometric Constructions

Let's say you don't have a marked ruler to measure lengths or a protractor to measure angles. Can you still draw the basic geometric shapes? Explore how the ancient Greeks were able to construct angles and basic geometric shapes using no more than a straight edge for marking lines and…

A Return to Parallelism

Continue your study of parallelism by exploring the properties of transversals (lines that intersect two other lines). Prove how corresponding angles are congruent, and see how this fact ties into a particular type of polygon: trapezoids.

Exploring Special Quadrilaterals

Classify all different types of four-sided polygons (called quadrilaterals) and learn the surprising characteristics about the diagonals and interior angles of rectangles, rhombuses, trapezoids, and more. Also see how real-life objects--like ironing boards--exhibit these geometric characteristics.

The Geometry of Figurate Numbers

Ponder another surprising appearance of geometry--the mathematics of numbers and number theory. Look into the properties of square and triangular numbers, and use geometry to do some fancy arithmetic without a calculator.

Practical Applications of Similarity

Build on the side-angle-side postulate and derive other ways of testing whether triangles are similar or congruent. Also dive into several practical applications, including a trick botanists use for estimating the heights of trees and a way to measure the width of a river using only a baseball cap.

Log in