The Art of Experiment

The Great Courses
Show More

If you are a student or a professor:

Watch now

If you are a librarian or a professor:

Related videos

The Search for Exoplanets: What Astronomers Know
As recently as 1990, it seemed plausible that the solar system was a unique phenomenon in our galaxy. Thanks to advances in technology and clever new uses of existing data, now we know that planetary systems and possibly even a new Earth can be found throughout galaxies near and far.…
Gravitomagnetism and Gravitational Waves
The general theory of relativity predicts new phenomena of gravity analogous to those of electromagnetism. Discover how ultra-sensitive experiments have detected the gravitomagnetism of the Earth, and follow the search for elusive gravitational waves that travel through space.
Light in Curved Spacetime
See how Einstein's general theory of relativity predicts the bending of light in a gravitational field, famously confirmed in 1919 by the British scientist Arthur Eddington. Learn how this phenomenon creates natural gravitational lenses--and how the bending of light reveals invisible matter in deep space.
Resonance—Surprises in the Intricate Dance
Resonance happens whenever a small periodic force produces a large effect on a periodic motion--for example, when you push a child on a swing. Learn how resonance due to gravitational interactions between three bodies can lead to amazing phenomena with planets, asteroids, and rings of planets.
The Strangest Force
Begin your exploration of gravity with Isaac Newton and the famous story of the apple. Why was it such a breakthrough to connect a falling apple with the faraway moon? Review the essential characteristics of gravity and learn why small asteroids and large planets have such different shapes.
Hubble's View of Galaxies Near and Far
Episode 8 of Experiencing Hubble
Hubble's image of the nearby galaxy NGC 3370 includes many faint galaxies in the background, exemplifying the telescope's mission to establish an accurate distance scale to galaxies near and far: along with the related expansion rate of the universe. Discover how Hubble's success has led to the concept of dark…
Cosmic Antigravity—Inflation and Dark Energy
In this episode, investigate cosmic antigravity, starting with cosmic inflation, a phenomenon that exponentially increased the size of the universe during the big bang. Then, learn why dark matter cannot be made of ordinary protons and neutrons, and explore the recent discovery that the expansion of the universe is accelerating,…
Super-Earths or Mini-Neptunes?
Learn how a sensitive new instrument led the way in finding planets smaller than the Jupiter-sized giants that dominated the earliest exoplanetary discoveries. Halfway in size between Earth and Neptune, these worlds have uncertain properties. For clues about their nature, consider how our solar system formed.
Why Study Exoplanets?
Learn about the exciting mission of exoplanetary science--the study of planets orbiting stars beyond the Sun. Review the eight planets in our solar system, which provide a baseline for understanding the more than 1,000 worlds recently discovered in our region of the Milky Way galaxy.
Spacetime Tells Matter How to Move
See how gravity affects Minkowski's spacetime geometry, discovering that motion in a gravitational field follows the straightest path in curved spacetime. The curvature in spacetime is not caused by gravity; it is gravity. This startling idea is the essence of Einstein's general theory of relativity.
Finding Planets with Gravitational Lensing
Get a lesson in Einstein's general theory of relativity to understand an effect called gravitational microlensing, which allows astronomers to deduce a planet's existence without recording any light from the planet or its host star. This technique reveals exoplanets that would otherwise go undetected.
Abell 2218: A Massive Gravitational Lens
Episode 10 of Experiencing Hubble
One of the consequences of Einstein's general theory of relativity is evident in Hubble's picture of the galaxy cluster Abell 2218. Investigate the physics of this phenomenon, called gravitational lensing, and discover how Hubble has used it to study extremely distant galaxies as well as dark matter.