Curved Spacetime and Black Holes

The Great Courses
Show More

Related videos

General Relativity
Episode 5 of Redefining Reality
Relativity was incomplete until Einstein formulated a general theory of relativity that incorporated gravity. See how this breakthrough demolished the age-old idea of gravity as a force, replacing it with the concept of warped spacetime, leading to strange predictions such as black holes.
Black Holes, Tides, and Curved Spacetime - Understanding Gravity Course
Gravity rules the universe. Without it, everything would dissolve into a gas of randomly interacting atoms. Yet gravity is one of the least understood forces in nature. Black Holes, Tides, and Curved Spacetime introduces you to key ideas in gravity research over the past 400 years. It's an awe-inspiring journey…
Spacetime Tells Matter How to Move
See how gravity affects Minkowski's spacetime geometry, discovering that motion in a gravitational field follows the straightest path in curved spacetime. The curvature in spacetime is not caused by gravity; it is gravity. This startling idea is the essence of Einstein's general theory of relativity.
Gravity’s Horizon—Anatomy of a Black Hole
Plunge into the subject of black holes, which are massive objects that have collapsed completely under their own gravity. Learn how black holes distort spacetime and explore the supermassive black holes that lie at the hearts of galaxies. Then ask: Are there such things as micro-black holes?
Inside Einstein's Mind
Part of the Series: NOVA
On November 25th, 1915, Einstein published his greatest work: general relativity. The theory transformed our understanding of nature's laws and the entire history of the cosmos, reaching back to the origin of time itself. Now, in celebration of the 100th anniversary of Einstein's achievement, NOVA tells the inside story of…
Black Hole Entropy
Stephen Hawking showed that black holes emit radiation and therefore have entropy. Since the entropy in the universe today is overwhelmingly in the form of black holes and there were no black holes in the early universe, entropy must have been much lower in the deep past.
Spacetime in Zero Gravity
In an influential interpretation of relativity, Einstein's former mathematics professor Hermann Minkowski reformulated the theory in terms of four-dimensional geometry, which he called spacetime. Learn how to plot events in this coordinate system in cases where gravity is zero.
General Relativity
Special relativity is limited to reference frames in uniform motion. Following Einstein, make the leap to a more general theory that encompasses accelerated frames of reference and necessarily includes gravity. According to Einstein's general theory of relativity, gravity is not a force but the geometrical structure of spacetime.
The Billion-Year Battle
Explore the physics of stars, which are balls of gas in a billion-year battle between the inward pull of gravity and the outward pressure produced by nuclear fusion. Follow this story to its ultimate finish--the triumph of gravity in massive stars that end their lives as black holes.
Time and Relativity
According to Einstein's special theory of relativity, there is no such thing as a moment in time spread throughout the universe. Instead, time is one of four dimensions in spacetime. Learn how this "relative" view of time is usefully diagramed with light cones, representing the past and future.
Which Universe Is Ours?
Investigate what Einstein called his "greatest mistake"--his rejection of his own theory's prediction that spacetime should be dynamic and evolving. Chart the work of a group of scientists, including Alexander Friedman, Georges Lemaitre, and Edwin Hubble, who advanced the realization that our universe is expanding from an apparent big bang.
The Falling Laboratory
Einstein focused on gravity in his general theory of relativity. Hear about his "happiest thought"--the realization that a man in free fall perceives gravity as zero. This simple insight resolved a mystery going all the way back to Newton and led Einstein to the startling discovery that gravity affects light…