Exoplanets and Extraterrestrial Life
Episode 28 of Redefining Reality

The Great Courses
Show More

If you are a student or a professor:

Watch now

If you are a librarian or a professor:

Related videos

Living with a Giant Star
In billions of years, the Sun will expand into a red giant, possibly engulfing Earth. Learn how planet-finding techniques give astronomers insight into the processes inside giant stars. Then study the planets around these behemoths for clues about Earth's ultimate fate.
Super-Earths or Mini-Neptunes?
Learn how a sensitive new instrument led the way in finding planets smaller than the Jupiter-sized giants that dominated the earliest exoplanetary discoveries. Halfway in size between Earth and Neptune, these worlds have uncertain properties. For clues about their nature, consider how our solar system formed.
Living with a Dwarf Star
The most common stars are class M dwarf stars, which are smaller and less luminous than the Sun (class G). Earth-sized planets are much easier to detect around M-dwarf stars, especially if the planets are within the relatively close-in habitable zone. Explore examples and the prospect for life on such…
Earthlike Planets
Begin your search for planets that may harbor life by studying the conditions that make Earth habitable, including its distance from the Sun, surface temperature, atmosphere, and oceans. Then examine strategies for finding earthlike planets and the progress to date.
Long-Term Future Planet-Finding Projects
Peer into the future at ambitious projects that may one day succeed in collecting light directly from an Earth-sized planet in the habitable zone of a nearby star. Examine three different engineering approaches: the coronagraph, interferometer, and starshade.
Stellar Rotation and Planetary Revolution
Trace Professor Winn's own search for the subtle signs that tell whether a star has a tilted axis. Discover why this is an important clue in the mystery of misplaced giant planets. Also hear how he chanced into the field of exoplanetary science.
Our Nearest Exoplanetary Neighbors
Pinpoint the location of the nearest exoplanetary systems to Earth. First, get the big picture on the layout of our Milky Way galaxy, its size, and the Sun's position. Also learn why the Kepler spacecraft focused on exoplanets much more distant than those targeted by the Doppler technique.
Sniffing Planetary Atmospheres
Survey the history of spectroscopy to understand how a telescope and a diffraction grating can disclose the composition of a star and its planet. Then learn how transits and occultations are ideal for analyzing planetary atmospheres, paving the way for the search for signatures of life.
Coming Soon: Biosignatures, Moons, and More!
Explore the distinctive biosignatures that show the presence of life of any kind on an exoplanet. Then close with Professor Winn's tip sheet on exoplanetary discoveries likely in the near future--from evidence of moons to planets being destroyed by giant stars.
Planets Circling Two Stars
See how data from the Kepler spacecraft confirms a scenario straight out of the movie Star Wars: a planet with two suns. Investigate the tricky orbital mechanics of these systems. A double star also complicates the heating and cooling cycle on a planet. However, the view is spectacular!
Finding Planets with Direct Imaging
Turn to the most obvious way to find exoplanets: direct imaging. Explore the optics of telescopes to learn why spotting an exoplanet next to its parent star is so difficult. Then see how this limitation has been overcome in a handful of cases.
How to Find an Exoplanet
Given the extreme faintness of a planet relative to the star it orbits, how can astronomers possibly find it? Learn about direct and indirect methods of detection. As an example of the indirect method, discover why a planet causes a star's position to change, providing a strategy for locating exoplanets…