Episode 2 of The Joy of Mathematics

How do you add all the numbers from 1 to 100--instantly? What makes a square number square and a triangular number triangular? Why do the rules of arithmetic really work, and how do you calculate in bases other than 10?

Running Time

29 mins

Year

2007

Kanopy ID

1274155

Features

Languages

Subjects

Show More

Math in Your Head!

Dive right into the joys of mental math. First, learn the fundamental strategies of mental arithmetic (including the value of adding from left to right, unlike what you do on paper). Then, discover how a variety of shortcuts hold the keys to rapidly solving basic multiplication problems and finding squares.

The Geometry of Figurate Numbers

Ponder another surprising appearance of geometry--the mathematics of numbers and number theory. Look into the properties of square and triangular numbers, and use geometry to do some fancy arithmetic without a calculator.

Advanced Multiplication

Professor Benjamin shows you how to do enormous multiplication problems in your head, such as squaring three-digit and four-digit numbers; cubing two-digit numbers, and multiplying two-digit and three-digit numbers. While you may not frequently encounter these large problems, knowing how to mentally solve them cements your knowledge of basic mental…

Mental Addition and Subtraction

Professor Benjamin demonstrates how easily you can mentally add and subtract one-, two-, and three-digit numbers. He also shows you shortcuts using the complement of a number (its distance from 100 or 1000) and demonstrates the uses of mental addition and subtraction for quickly counting calories and making change.

Mental Math and Paper

Sometimes we encounter math problems on paper in our daily lives. Even so, there are some rarely taught techniques to help speed up your calculations and check your answers when you are adding tall columns of numbers, multiplying numbers of any length, and more.

Go Forth and Multiply

Delve into the secrets of easy mental multiplication: Professor Benjamin's favorite mathematical operation. Once you've mastered how to quickly multiply any two-digit or three-digit number by a one-digit number, you've mastered the most fundamental operations of mental multiplication and added a vital tool to your mental math tool kit.

Elementary Math Isn't Elementary

Discover why all numbers are interesting and why 0.99999... is nothing less than the number 1. Learn that your intuition about breaking spaghetti noodles is probably wrong. Finally, see how averages - from mileage to the Dow Jones Industrial Average - can be deceptive.

The Joy of Approximating with Calculus

Exploiting the idea of the derivative, we can approximate just about any function using simple polynomials. This lecture also shows why a formula sometimes known as "God's equation" (involving e, i, p, 1, and 0) is true, and how to calculate square roots in your head.

Expert Backgammon

Mathematically trained players also have a decisive edge in backgammon, which trains you to make decisions in highly uncertain conditions. Professor Benjamin explains the rules of the game, the basic strategies for winning, the best ways to play your opening rolls, and how math constantly enters the picture--from figuring out…

Divide and Conquer

Turn now to the last fundamental operation of arithmetic: division. Explore a variety of shortcuts for dividing by one- and two-digit numbers; learn how to convert fractions such as 1/7 and 3/16 into decimals; and discover methods for determining when a large number is divisible by numbers such as 3,…

Angles and Pencil-Turning Mysteries

Using nothing more than an ordinary pencil, see how three angles in a triangle can add up to 180 degrees. Then compare how the experience of turning a pencil on a flat triangle differs from walking in a triangular shape on the surface of a sphere. With this exercise, Professor…

Pushing the Picture of Fractions

Delve into irrational numbers--those that can't be expressed as the ratio of two whole numbers (i.e., as fractions) and therefore don't repeat. But how can we be sure they don't repeat? Prove that a famous irrational number, the square root of two, can't possibly be a fraction.

Log in to your Kanopy account

Create your Kanopy account