Episode 7 of Geometry

Examine how our usual definition of parallelism is impossible to check. Use the fundamental assumptions from the previous lectures to follow in Euclid's footsteps and create an alternative way of checking if lines are parallel. See how, using this result, it's possible to compute the circumference of the Earth just by using shadows!

Running Time

35 mins

Year

2014

Kanopy ID

1338401

Filmmakers

Languages

Subjects

Show More

If you are a student or a professor:

Watch nowIf you are a librarian or a professor:

A Return to Parallelism

Continue your study of parallelism by exploring the properties of transversals (lines that intersect two other lines). Prove how corresponding angles are congruent, and see how this fact ties into a particular type of polygon: trapezoids.

Introduction to Scale

If you double the side-lengths of a shape, what happens to its area? If the shape is three-dimensional, what happens to its volume? In this lecture, you explore the concept of scale. You use this idea to re-derive one of our fundamental assumptions of geometry, the Pythagorean theorem, using the…

Complex Numbers in Geometry

In lecture 6, you saw how 17th-century mathematician Rene Descartes united geometry and algebra with the invention of the coordinate plane. Now go a step further and explore the power and surprises that come from using the complex number plane. Examine how using complex numbers can help solve several tricky…

Tilings, Platonic Solids, and Theorems

You've seen geometric tiling patterns on your bathroom floor and in the works of great artists. But what would happen if you made repeating patterns in 3-D space? In this lecture, discover the five platonic solids! Also, become an artist and create your own beautiful patterns--even using more than one…

Making Use of Linear Equations

Delve deeper into the connections between algebra and geometry by looking at lines and their equations. Use the three basic assumptions from previous lectures to prove that parallel lines have the same slope and to calculate the shortest distance between a point and a line.

Angles and Pencil-Turning Mysteries

Using nothing more than an ordinary pencil, see how three angles in a triangle can add up to 180 degrees. Then compare how the experience of turning a pencil on a flat triangle differs from walking in a triangular shape on the surface of a sphere. With this exercise, Professor…

The Joy of 9

Adding the digits of a multiple of 9 always gives a multiple of 9. For example: 9 x 4 = 36, and 3 + 6 = 9. In modular arithmetic, this property allows checking answers by "casting out nines." A related trick: mentally computing the day of the week for…

Similarity and Congruence

Define what it means for polygons to be "similar" or "congruent" by thinking about photocopies. Then use that to prove the third key assumption of geometry--the side-angle-side postulate--which lets you verify when triangles are similar. Thales of Ionia used this principle in 600 B.C.E. to impress the Egyptians by calculating…

The Mathematics of Fractals

Explore the beautiful and mysterious world of fractals. Learn what they are and how to create them. Examine famous examples such as Sierpinski's Triangle and the Koch Snowflake. Then, uncover how fractals appear in nature--from the structure of sea sponges to the walls of our small intestines.

The Pythagorean Theorem

We commonly define the Pythagorean theorem using the formula a2 + b2 = c2. But Pythagoras himself would have been confused by that. Explore how this famous theorem can be explained using common geometric shapes (no fancy algebra required), and how it's a critical foundation for the rest of geometry.

Dido's Problem

If you have a fixed-length string, what shape can you create with that string to give you the biggest area? Uncover the answer to this question using the legendary story of Dido and the founding of the city of Carthage.

The Joy of Algebra

Arguably the most important area of mathematics, algebra introduces the powerful idea of using an abstract variable to represent an unknown quantity. This lecture demonstrates algebra's golden rule: Do unto one side of an equation as you do unto the other.

Log in to your Kanopy account

Create your Kanopy account