The Nature of Parallelism
Episode 7 of Geometry

The Great Courses
Show More

Related videos

Making Use of Linear Equations
Episode 11 of Geometry
Delve deeper into the connections between algebra and geometry by looking at lines and their equations. Use the three basic assumptions from previous lectures to prove that parallel lines have the same slope and to calculate the shortest distance between a point and a line.
Introduction to Scale
Episode 24 of Geometry
If you double the side-lengths of a shape, what happens to its area? If the shape is three-dimensional, what happens to its volume? In this lecture, you explore the concept of scale. You use this idea to re-derive one of our fundamental assumptions of geometry, the Pythagorean theorem, using the…
Complex Numbers in Geometry
Episode 35 of Geometry
In lecture 6, you saw how 17th-century mathematician Rene Descartes united geometry and algebra with the invention of the coordinate plane. Now go a step further and explore the power and surprises that come from using the complex number plane. Examine how using complex numbers can help solve several tricky…
Tilings, Platonic Solids, and Theorems
Episode 28 of Geometry
You've seen geometric tiling patterns on your bathroom floor and in the works of great artists. But what would happen if you made repeating patterns in 3-D space? In this lecture, discover the five platonic solids! Also, become an artist and create your own beautiful patterns--even using more than one…
A Return to Parallelism
Episode 13 of Geometry
Continue your study of parallelism by exploring the properties of transversals (lines that intersect two other lines). Prove how corresponding angles are congruent, and see how this fact ties into a particular type of polygon: trapezoids.
An Introduction to Formal Logic
Logic is intellectual self-defense against such assaults on reason and also a method of quality control for checking the validity of your own views. But beyond these very practical benefits, informal logic--the kind we apply in daily life--is the gateway to an elegant and fascinating branch of philosophy known as…
The Joy of 9
Episode 9 of The Joy of Mathematics
Adding the digits of a multiple of 9 always gives a multiple of 9. For example: 9 x 4 = 36, and 3 + 6 = 9. In modular arithmetic, this property allows checking answers by "casting out nines." A related trick: mentally computing the day of the week for…
Similarity and Congruence
Episode 9 of Geometry
Define what it means for polygons to be "similar" or "congruent" by thinking about photocopies. Then use that to prove the third key assumption of geometry--the side-angle-side postulate--which lets you verify when triangles are similar. Thales of Ionia used this principle in 600 B.C.E. to impress the Egyptians by calculating…
The Mathematics of Fractals
Episode 31 of Geometry
Explore the beautiful and mysterious world of fractals. Learn what they are and how to create them. Examine famous examples such as Sierpinski's Triangle and the Koch Snowflake. Then, uncover how fractals appear in nature--from the structure of sea sponges to the walls of our small intestines.
The Pythagorean Theorem
Episode 5 of Geometry
We commonly define the Pythagorean theorem using the formula a2 + b2 = c2. But Pythagoras himself would have been confused by that. Explore how this famous theorem can be explained using common geometric shapes (no fancy algebra required), and how it's a critical foundation for the rest of geometry.
Dido's Problem
Episode 32 of Geometry
If you have a fixed-length string, what shape can you create with that string to give you the biggest area? Uncover the answer to this question using the legendary story of Dido and the founding of the city of Carthage.
The Joy of Algebra
Episode 6 of The Joy of Mathematics
Arguably the most important area of mathematics, algebra introduces the powerful idea of using an abstract variable to represent an unknown quantity. This lecture demonstrates algebra's golden rule: Do unto one side of an equation as you do unto the other.