Symmetry: Revitalizing Quadratics Graphing

The Great Courses
Show More

Related videos

Symmetry: Revitalizing Quadratics Algebra
Learn why quadratic equations have "quad" in their name, even though they don't involve anything to the 4th power. Then try increasingly challenging examples, finding the solutions by sketching a square. Finally, derive the quadratic formula, which you've been using all along without realizing it.
The Visuals of Graphs
Inspired by a question about the Fibonacci numbers, probe the power of graphs. First, experiment with scatter plots. Then see how plotting data is like graphing functions in algebra. Use graphs to prove the fixed-point theorem and answer the Fibonacci question that opened the lecture.
Factoring is Fantastic
Key concepts explained: Factoring, terms, expressions, finding the greatest common factor(s), and factoring polynomial expressions that are the sums or differences of terms with common factors. This starts with a review of numerical factors and greatest common factors, and moves into the realm of algebra. Different types of factoring and…
Algebra
The 18 videos in this collection focus on all aspects of Algebra, from logarithms to quadratic equations and partial fractions.
Pushing Long Division to New Heights
Put your dots-and-boxes machine to work solving long-division problems, making them easy while shedding light on the rationale behind the confusing long-division algorithm taught in school. Then watch how the machine quickly handles scary-looking division problems in polynomial algebra.
Algebra: A Piece of Cake
Covers variable, numerical substitution, algebraic conventions, developing algebraic formulas from number patterns.
Visualizing Balance Points in Statistics
Venture into statistics to see how Archimedes' law of the lever lets you calculate data averages on a scatter plot. Also discover how to use the method of least squares to find the line of best fit on a graph.
Visualizing Negative Numbers
Negative numbers are often confusing, especially negative parenthetical expressions in algebra problems. Discover a simple visual model that makes it easy to keep track of what's negative and what's not, allowing you to tackle long strings of negatives and positives--with parentheses galore.
Visualizing Pascal's Triangle
Keep playing with the approach from the previous lecture, applying it to algebra problems, counting paths in a grid, and Pascal's triangle. Then explore some of the beautiful patterns in Pascal's triangle, including its connection to the powers of eleven and the binomial theorem.
Visualizing Area Formulas
Never memorize an area formula again after you see these simple visual proofs for computing areas of rectangles, parallelograms, triangles, polygons in general, and circles. Then prove that for two polygons of the same area, you can dissect one into pieces that can be rearranged to form the other.
Visualizing Probability
Probability problems can be confusing as you try to decide what to multiply and what to divide. But visual models come to the rescue, letting you solve a series of riddles involving coins, dice, medical tests, and the granddaddy of probability problems that was posed to French mathematician Blaise Pascal…
Linear Equations and Their Graphs
Key concepts explained: linear equations and their graphs, and the domain of an equation.