# Visualizing the Fibonacci Numbers Part of the Series: The Power of Mathematical Visualization

## Related videos

The Visuals of Graphs
Inspired by a question about the Fibonacci numbers, probe the power of graphs. First, experiment with scatter plots. Then see how plotting data is like graphing functions in algebra. Use graphs to prove the fixed-point theorem and answer the Fibonacci question that opened the lecture.
Matter And Chemistry Series, for Elementary
Specifically designed for and correlated to the curriulum of a elementary school science course, this series explores key topics on Matter and Chemistry and helps instructors to teach challenging concepts. The films, and accompanying teacher materials, are a great asset for teachers and teachers in training to use to integrate…
Visualizing Ratio Word Problems
Word problems. Does that phrase strike fear into your heart? Relax with Professor Tanton's tips on cutting through the confusing details about groups and objects, particularly when ratios and proportions are involved. Your handy visual devices include blocks, paper strips, and poker chips.
Visualizing Decimals
Expand into the realm of decimals by probing the connection between decimals and fractions, focusing on decimals that repeat. Can they all be expressed as fractions? If so, is there a straightforward way to convert repeating decimals to fractions using the dots-and-boxes method? Of course there is!
Visualizing Mathematical Infinities
Ponder a question posed by mathematician Georg Cantor: what makes two sets the same size? Start by matching the infinite counting numbers with other infinite sets, proving they're the same size. Then discover an infinite set that's infinitely larger than the counting numbers. In fact, find an infinite number of…
Visualizing Pascal's Triangle
Keep playing with the approach from the previous lecture, applying it to algebra problems, counting paths in a grid, and Pascal's triangle. Then explore some of the beautiful patterns in Pascal's triangle, including its connection to the powers of eleven and the binomial theorem.
Visualizing Random Movement, Orderly Effect
Discover that Pascal's triangle encodes the behavior of random walks, which are randomly taken steps characteristic of the particles in diffusing gases and other random phenomena. Focus on the inevitability of returning to the starting point. Also consider how random walks are linked to the "gambler's ruin" theorem.
Visualizing Fixed Points
One sheet of paper lying directly atop another has all its points aligned with the bottom sheet. But what if the top sheet is crumpled? Do any of its points still lie directly over the corresponding point on the bottom sheet? See a marvelous visual proof of this fixed-point theorem.
Visualizing Negative Numbers
Negative numbers are often confusing, especially negative parenthetical expressions in algebra problems. Discover a simple visual model that makes it easy to keep track of what's negative and what's not, allowing you to tackle long strings of negatives and positives--with parentheses galore.
Visualizing Extraordinary Ways to Multiply
Consider the oddity of the long-multiplication algorithm most of us learned in school. Discover a completely new way to multiply that is graphical--and just as strange! Then analyze how these two systems work. Finally, solve the mystery of why negative times negative is always positive.
Math Series 1
A math series designed for grades 7th to 9th to help students learn and understand math concepts.
Geometry and Vectors
The 10 videos in this collection focus on all aspects of Geometry and Vectors.